Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Chinese Journal of Biologicals ; 35(4):481-485, 2022.
Article in Chinese | GIM | ID: covidwho-2081012
2.
Signal Transduct Target Ther ; 7(1): 256, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1960334

ABSTRACT

A steep rise in Omicron reinfection cases suggests that this variant has increased immune evasion ability. To evaluate its antigenicity relationship with other variants, antisera from guinea pigs immunized with spike protein of SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) were cross-tested against pseudotyped variants. The neutralization activity against Omicron was markedly reduced when other VOCs or VOIs were used as immunogens, and Omicron (BA.1)-elicited sera did not efficiently neutralize the other variants. However, a Beta or Omicron booster, when administered as the 4th dose 3-months after the 3rd dose of any of the variants, could elicit broad neutralizing antibodies against all of the current variants including Omicron BA.1. Further analysis with 280 available antigen-antibody structures and quantification of immune escape from 715 reported neutralizing antibodies provide explanations for the observed differential immunogenicity. Three distinct clades predicted using an in silico algorithm for clustering of sarbecoviruses based on immune escape provide key information for rational design of vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral/genetics , COVID-19/genetics , Cluster Analysis , Guinea Pigs , Humans , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
3.
MedComm (2020) ; 3(2): e130, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1782644

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, particularly those with multiple mutations in receptor-binding domain (RBD), pose a critical challenge to the efficacy of coronavirus disease 2019 (COVID-19) vaccines and therapeutic neutralizing monoclonal antibodies (mAbs). Omicron sublineages BA.1, BA.2, BA.3, as well as the recent emergence of C.1.2, B.1.630, B.1.640.1, and B.1.640.2, have multiple mutations in RBD and may lead to severe neutralizing antibody evasion. It is urgent to evaluate the antigenic change of the above seven variants against mAbs and sera from guinea pigs immunized with variants of concern (VOCs) (Alpha, Beta, Gamma, Delta, Omicron) and variants of interest (VOIs) (Lambda, Mu) immunogens. Only seven out of the 24 mAbs showed no reduction in neutralizing activity against BA.1, BA.2, and BA.3. However, among these seven mAbs, the neutralization activity of XGv337 and XGv338 against C.1.2, B.1.630, B.1.640.1, and B.1.640.2 were decreased. Therefore, only five neutralizing mAbs showed no significant change against these seven variants. Using VOCs and VOIs as immunogens, we found that the antigenicity of variants could be divided into three clusters, and each cluster showed similar antigenicity to different immunogens. Among them, D614G, B.1.640.1, and B.1.630 formed a cluster, C.1.2 and B.1.640.2 formed a cluster, and BA.1, BA.2, and BA.3 formed a cluster.

4.
Risk Manag Healthc Policy ; 14: 4321-4337, 2021.
Article in English | MEDLINE | ID: covidwho-1760062

ABSTRACT

Since first outbreak of respiratory disease in China, the Coronavirus epidemic (COVID-19) spread on a large scale, causing huge losses to individuals, families, communities and society in the country. The conventional research on the transmission process is basically to study the law or trend of the transmission of infectious diseases from a macro perspective. For in-depth study of the critical data of the newly confirmed patients, one effective way to improve the social isolation measures requires the formation of an organized tracking knowledge system for the confirmed patients and the personnel who have been removed, and the deep data mining and application. Knowledge graph (KG) is one of the irreplaceable techniques to quickly gather patient contact information and outbreak event, which reflecting the relationship between knowledge evolution and structure of novel Coronavirus. Therefore, this paper proposes a method for the analysis of COVID-19 epidemic situation using knowledge graph combined with interactive visual analysis. Firstly, based on the key factors of novel Coronavirus disease, the entity model of the patient, the relationship type of the patient and the expression of knowledge modeling were proposed, and the knowledge graph of the action track of the COVID-19 patient was deeply explored and comparative summarized. Secondly, in the process of constructing knowledge graph, conditional random field (CRF) algorithm is used to extract entity and knowledge. Meanwhile, to better analyze the disease relationship between patients, the semantic relationship of knowledge graph was combined with the visualization of knowledge graph, and the semantic model was verified by deep learning calculation and node attribute similarity. To discover the community detection of patients in the patient knowledge graph, this paper uses PageRank combined with Label propagation algorithms to discover community propagation in the network. Finally, COVID-19 epidemic situation was analyzed from confirmed patient data and multi-view collaborative interactions, such as map distribution visualization, knowledge graph visualization, and track visualization. The results show that the construction of a knowledge graph of COVID-19 patient activity is feasible for the transmission process, analysis of key nodes and tracing of activity tracks.

5.
Journal of Medical Virology ; 94(5):i-i, 2022.
Article in English | Wiley | ID: covidwho-1750403

ABSTRACT

Front Cover Caption: The cover image is based on the Research Article Aggregation of high-frequency RBD mutations of SARS-CoV-2 with three VOCs did not cause significant antigenic drift by Tao Li et al., https://doi.org/10.1002/jmv.27596.

6.
Emerg Microbes Infect ; 11(1): 1024-1036, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1740712

ABSTRACT

SARS-CoV-2 has caused the COVID-19 pandemic. B.1.617 variants (including Kappa and Delta) have been transmitted rapidly in India. The transmissibility, pathogenicity, and neutralization characteristics of these variants have received considerable interest. In this study, 22 pseudotyped viruses were constructed for B.1.617 variants and their corresponding single amino acid mutations. B.1.617 variants did not exhibit significant enhanced infectivity in human cells, but mutations T478K and E484Q in the receptor binding domain led to enhanced infectivity in mouse ACE2-overexpressing cells. Furin activities were slightly increased against B.1.617 variants and cell-cell fusion after infection of B.1.617 variants were enhanced. Furthermore, B.1.617 variants escaped neutralization by several mAbs, mainly because of mutations L452R, T478K, and E484Q in the receptor binding domain. The neutralization activities of sera from convalescent patients, inactivated vaccine-immunized volunteers, adenovirus vaccine-immunized volunteers, and SARS-CoV-2 immunized animals against pseudotyped B.1.617 variants were reduced by approximately twofold, compared with the D614G variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Cell Fusion , Humans , Mice , Mutation , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Viral Tropism
7.
Eur J Med Chem ; 234: 114209, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1719653

ABSTRACT

Thirty-two clofazimine derivatives, of which twenty-two were new, were synthesized and evaluated for their antiviral effects against both rabies virus and pseudo-typed SARS-CoV-2, taking clofazimine (1) as the lead. Among them, compound 15f bearing 4-methoxy-2-pyridyl at the N5-position showed superior or comparable antiviral activities to lead 1, with the EC50 values of 1.45 µM and 14.6 µM and the SI values of 223 and 6.1, respectively. Compound 15f inhibited rabies and SARS-CoV-2 by targeting G or S protein to block membrane fusion, as well as binding to L protein or nsp13 to inhibit intracellular biosynthesis respectively, and thus synergistically exerted a broad-spectrum antiviral effect. The results provided useful scientific data for the development of clofazimine derivatives into a new class of broad-spectrum antiviral candidates.


Subject(s)
Antiviral Agents , COVID-19 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Clofazimine , Humans , SARS-CoV-2
8.
Nature ; 603(7903): 919-925, 2022 03.
Article in English | MEDLINE | ID: covidwho-1655591

ABSTRACT

Omicron (B.1.1.529), the most heavily mutated SARS-CoV-2 variant so far, is highly resistant to neutralizing antibodies, raising concerns about the effectiveness of antibody therapies and vaccines1,2. Here we examined whether sera from individuals who received two or three doses of inactivated SARS-CoV-2 vaccine could neutralize authentic Omicron. The seroconversion rates of neutralizing antibodies were 3.3% (2 out of 60) and 95% (57 out of 60) for individuals who had received 2 and 3 doses of vaccine, respectively. For recipients of three vaccine doses, the geometric mean neutralization antibody titre for Omicron was 16.5-fold lower than for the ancestral virus (254). We isolated 323 human monoclonal antibodies derived from memory B cells in triple vaccinees, half of which recognized the receptor-binding domain, and showed that a subset (24 out of 163) potently neutralized all SARS-CoV-2 variants of concern, including Omicron. Therapeutic treatments with representative broadly neutralizing monoclonal antibodies were highly protective against infection of mice with SARS-CoV-2 Beta (B.1.351) and Omicron. Atomic structures of the Omicron spike protein in complex with three classes of antibodies that were active against all five variants of concern defined the binding and neutralizing determinants and revealed a key antibody escape site, G446S, that confers greater resistance to a class of antibodies that bind on the right shoulder of the receptor-binding domain by altering local conformation at the binding interface. Our results rationalize the use of three-dose immunization regimens and suggest that the fundamental epitopes revealed by these broadly ultrapotent antibodies are rational targets for a universal sarbecovirus vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Memory B Cells , SARS-CoV-2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Disease Models, Animal , Humans , Memory B Cells/immunology , Mice , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
9.
Arch Virol ; 167(2): 459-470, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1653515

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a major impact on global human health. During the spread of SARS-CoV-2, weakened host immunity and the use of vaccines with low efficacy may result in the development of more-virulent strains or strains with resistance to existing vaccines and antibodies. The prevalence of SARS-CoV-2 mutant strains differs between regions, and this variation may have an impact on the effectiveness of vaccines. In this study, an epidemiological investigation of SARS-CoV-2 in Portugal was performed, and the VSV-ΔG-G* pseudovirus system was used to construct 12 spike protein epidemic mutants, D614G, A222V+D614G, B.1.1.7, S477N+D614G, P1162R+D614G+A222V, D839Y+D614G, L176F+D614G, B.1.1.7+L216F, B.1.1.7+M740V, B.1.258, B.1.258+L1063F, and B.1.258+N751Y. The mutant pseudoviruses were used to infect four susceptible cell lines (Huh7, hACE2-293T-293T, Vero, and LLC-MK2) and 14 cell lines overexpressing ACE2 from different species. Mutant strains did not show increased infectivity or cross-species transmission. Neutralization activity against these pseudoviruses was evaluated using mouse serum and 11 monoclonal antibodies. The neutralizing activity of immunized mouse serum was not significantly reduced with the mutant strains, but the mutant strains from Portugal could evade nine of the 11 monoclonal antibodies tested. Neutralization resistance was mainly caused by the mutations S477N, N439K, and N501Y in the spike-receptor binding domain. These findings emphasize the importance of SARS-CoV-2 mutation tracking in different regions for epidemic prevention and control.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Humans , Mice , Mutation , Portugal/epidemiology , Spike Glycoprotein, Coronavirus/genetics
10.
Signal Transduct Target Ther ; 7(1): 18, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1639142

ABSTRACT

Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19 Vaccines/metabolism , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Binding Sites , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Expression , Humans , Immune Sera/chemistry , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/metabolism , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Pseudotyping
11.
J Med Virol ; 94(5): 2108-2125, 2022 05.
Article in English | MEDLINE | ID: covidwho-1627779

ABSTRACT

Variants of SARS-CoV-2 continue to emerge, posing great challenges in outbreak prevention and control. It is important to understand in advance the impact of possible variants of concern (VOCs) on infectivity and antigenicity. Here, we constructed one or more of the 15 high-frequency naturally occurring amino acid changes in the receptor-binding domain (RBD) of Alpha, Beta, and Gamma variants. A single mutant of A520S, V367F, and S494P in the above three VOCs enhanced infectivity in ACE2-overexpressing 293T cells of different species, LLC-MK2 and Vero cells. Aggregation of multiple RBD mutations significantly reduces the infectivity of the possible three VOCs. Regarding neutralization, it is noteworthy that E484K, N501Y, K417N, and N439K predispose to monoclonal antibodies (mAbs) protection failure in the 15 high-frequency mutations. Most importantly, almost all possible VOCs (single RBD mutation or aggregation of multiple mutations) showed no more than a fourfold decrease in neutralizing activity with convalescent sera, vaccine sera, and immune sera of guinea pigs with different immunogens, and no significant antigenic drift was formed. In conclusion, our pseudovirus results could reduce the concern that the aggregation of multiple high-frequency mutations in the RBD of the spike protein of the three VOCs would lead to severe antigenic drift, and this would provide value for vaccine development strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antigenic Drift and Shift , COVID-19/therapy , Chlorocebus aethiops , Guinea Pigs , Humans , Immunization, Passive , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vero Cells , COVID-19 Serotherapy
12.
Emerg Microbes Infect ; 11(1): 182-194, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1550502

ABSTRACT

The ubiquitously-expressed proteolytic enzyme furin is closely related to the pathogenesis of SARS-CoV-2 and therefore represents a key target for antiviral therapy. Based on bioinformatic analysis and pseudovirus tests, we discovered a second functional furin site located in the spike protein. Furin still increased the infectivity of mutated SARS-CoV-2 pseudovirus in 293T-ACE2 cells when the canonical polybasic cleavage site (682-686) was deleted. However, K814A mutation eliminated the enhancing effect of furin on virus infection. Furin inhibitor prevented infection by 682-686-deleted SARS-CoV-2 in 293T-ACE2-furin cells, but not the K814A mutant. K814A mutation did not affect the activity of TMPRSS2 and cathepsin L but did impact the cleavage of S2 into S2' and cell-cell fusion. Additionally, we showed that this functional furin site exists in RaTG13 from bat and PCoV-GD/GX from pangolin. Therefore, we discovered a new functional furin site that is pivotal in promoting SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Cathepsin L/metabolism , Furin/metabolism , SARS-CoV-2/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/genetics , Animals , Cathepsin L/genetics , Cell Fusion , Chiroptera , Furin/genetics , Gene Expression , HEK293 Cells , Humans , Mice , Mice, Transgenic , Mutation , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vermilingua
13.
Sustainability ; 13(22):12816, 2021.
Article in English | ProQuest Central | ID: covidwho-1538508

ABSTRACT

Career commitment refers to individuals’ dedication to their career;in the field of vocational psychology, career commitment is considered a vital factor for promoting a sustainable career. The current study examined a mediation model of career concern related to career commitment with career exploration and Career Decision-Making Self-Efficacy (CDMSE) as two mediators. The participants were 1105 high school students (males = 594, females = 511) recruited from three main cities in Jiangsu Province, China. Results indicated that the hypotheses were all confirmed: the direct effect of career concern on career commitment was significant (β = 0.598, p < 0.001);the indirect effect of career concern on career commitment through career exploration and CDMSE was also significant (β = 0.255, p < 0.001);and career exploration and CDMSE mediated the relation from career concern to career commitment. Finally, the authors discussed the implications of the findings which could be applied to improve a high school student’s career commitment and the sustainability of career development. The limitations of the study and the future research needed to complement the current work are also discussed.

14.
Emerg Microbes Infect ; 11(1): 18-29, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1532383

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 variants have continued to emerge in diverse geographic locations with a temporal distribution. The Lambda variant containing multiple mutations in the spike protein, has thus far appeared mainly in South America. The variant harbours two mutations in the receptor binding domain, L452Q and F490S, which may change its infectivity and antigenicity to neutralizing antibodies. In this study, we constructed 10 pseudoviruses to study the Lambda variant and each individual amino acid mutation's effect on viral function, and used eight cell lines to study variant infectivity. In total, 12 monoclonal antibodies, 14 convalescent sera, and 23 immunized sera induced by mRNA vaccines, inactivated vaccine, and adenovirus type 5 vector vaccine were used to study the antigenicity of the Lambda variant. We found that compared with the D614G reference strain, Lambda demonstrated enhanced infectivity of Calu-3 and LLC-MK2 cells by 3.3-fold and 1.6-fold, respectively. Notably, the sensitivity of the Lambda variant to 5 of 12 neutralizing monoclonal antibodies, 9G11, AM180, R126, X593, and AbG3, was substantially diminished. Furthermore, convalescent- and vaccine-immunized sera showed on average 1.3-2.5-fold lower neutralizing titres against the Lambda variant. Single mutation analysis revealed that this reduction in neutralization was caused by L452Q and F490S mutations. Collectively, the reduced neutralization ability of the Lambda variant suggests that the efficacy of monoclonal antibodies and vaccines may be compromised during the current pandemic.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Binding Sites , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Cell Line , Host-Pathogen Interactions , Humans , Immune Sera , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Structure-Activity Relationship , Viral Pseudotyping
15.
Commun Biol ; 4(1): 1196, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1467140

ABSTRACT

Emerging mutations in SARS-CoV-2 cause several waves of COVID-19 pandemic. Here we investigate the infectivity and antigenicity of ten emerging SARS-CoV-2 variants-B.1.1.298, B.1.1.7(Alpha), B.1.351(Beta), P.1(Gamma), P.2(Zeta), B.1.429(Epsilon), B.1.525(Eta), B.1.526-1(Iota), B.1.526-2(Iota), B.1.1.318-and seven corresponding single amino acid mutations in the receptor-binding domain using SARS-CoV-2 pseudovirus. The results indicate that the pseudovirus of most of the SARS-CoV-2 variants (except B.1.1.298) display slightly increased infectivity in human and monkey cell lines, especially B.1.351, B.1.525 and B.1.526 in Calu-3 cells. The K417N/T, N501Y, or E484K-carrying variants exhibit significantly increased abilities to infect mouse ACE2-overexpressing cells. The activities of furin, TMPRSS2, and cathepsin L are increased against most of the variants. RBD amino acid mutations comprising K417T/N, L452R, Y453F, S477N, E484K, and N501Y cause significant immune escape from 11 of 13 monoclonal antibodies. However, the resistance to neutralization by convalescent serum or vaccines elicited serum is mainly caused by the E484K mutation. The convalescent serum from B.1.1.7- and B.1.351-infected patients neutralized the variants themselves better than other SARS-CoV-2 variants. Our study provides insights regarding therapeutic antibodies and vaccines, and highlights the importance of E484K mutation.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/therapy , Cell Line , HEK293 Cells , Humans , Immunization, Passive/methods , Mammals/immunology , Mice , Mutation , Pandemics , Primates/immunology , Protein Binding , Tropism/genetics , COVID-19 Serotherapy
16.
Signal Transduct Target Ther ; 6(1): 346, 2021 09 24.
Article in English | MEDLINE | ID: covidwho-1437668

ABSTRACT

Antibody-dependent cellular cytotoxicity (ADCC) responses to viral infection are a form of antibody regulated immune responses mediated through the Fc fragment. Whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered ADCC responses contributes to COVID-19 disease development is currently not well understood. To understand the potential correlation between ADCC responses and COVID-19 disease development, we analyzed the ADCC activity and neutralizing antibody response in 255 individuals ranging from asymptomatic to fatal infections over 1 year post disease. ADCC was elicited by 10 days post-infection, peaked by 11-20 days, and remained detectable until 400 days post-infection. In general, patients with severe disease had higher ADCC activities. Notably, patients who had severe disease and recovered had higher ADCC activities than patients who had severe disease and deceased. Importantly, ADCC activities were mediated by a diversity of epitopes in SARS-COV-2-infected mice and induced to comparable levels against SARS-CoV-2 variants of concern (VOCs) (B.1.1.7, B.1.351, and P.1) as that against the D614G mutant in human patients and vaccinated mice. Our study indicates anti-SARS-CoV-2 ADCC as a major trait of COVID-19 patients with various conditions, which can be applied to estimate the extra-neutralization level against COVID-19, especially lethal COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Animals , Cell Line, Tumor , Female , Humans , Male , Mice , Middle Aged
18.
19.
Vaccine ; 39(41): 6050-6056, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1386708

ABSTRACT

The development of an effective vaccine to control the global coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus- 2 (SARS-CoV-2) is of utmost importance. In this study, a synthetic DNA-based vaccine candidate, known as pSV10-SARS-CoV-2, expressing the SARS-CoV-2 spike protein was designed and tested in 39 BALB/c mice with BC01, an adjuvant derived from unmethylated CpG motif-containing DNA fragments from the Bacillus Calmette-Guerin genome. Mice vaccinated with pSV10-SARS-CoV-2 with BC01 produced early neutralizing antibodies and developed stronger humoral and cellular immune responses compared to mice that received the DNA vaccine only. Moreover, sera from mice vaccinated with pSV10-SARS-CoV-2 with BC01 can neutralize certain variants, including 614G, 614G + 472 V, 452R, 483A, 501Y.V2, and B.1.1.7. The results of this study demonstrate that the addition of BC01 to a DNA-vaccine for COVID-19 could elicit more effective neutralizing antibody titers for disease prevention.


Subject(s)
COVID-19 , Vaccines, DNA , Animals , Antibodies, Neutralizing , Antibodies, Viral , BCG Vaccine , COVID-19 Vaccines , DNA , Genomics , Humans , Immunity, Cellular , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
20.
Journal of Applied Virology ; 9(4):41-45, 2020.
Article in English | GIM | ID: covidwho-1344634

ABSTRACT

The dominant N501Y mutation in the spike protein that SARS-CoV-2 virus uses to bind to the human ACE2 receptor were found in the UK, which has aroused global concern and worried. Mutations in spike protein may, in theory, result in more infectious and spreading more easily. In order to evaluate the broad-spectrum protective effect of the monoclonal antibodies(mAbs), we compared the neutralization activities of six prepared mAbs against SARS-CoV-2 with pseudovirus neutralization assay. Only one of them showed a decrease of 6 folds in neutralizing activity to N501Y mutant strain, compared with the wild type strain. We should continue to monitor emergence of new variants in different regions to study their infectivity and neutralization effect.

SELECTION OF CITATIONS
SEARCH DETAIL